p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.54D4, C4⋊D4⋊4C4, (C22×D4)⋊3C4, C22.23C4≀C2, C4.11(C23⋊C4), C22⋊C8⋊41C22, (C22×C4).736D4, C23.497(C2×D4), C24.4C4⋊20C2, C22.SD16⋊19C2, C4⋊D4.134C22, C22.35(C8⋊C22), C23.52(C22⋊C4), (C22×C4).629C23, (C23×C4).207C22, C2.C42⋊57C22, C2.8(C23.37D4), (C2×C4⋊C4)⋊7C4, C4⋊C4.7(C2×C4), C2.24(C2×C4≀C2), (C2×D4).7(C2×C4), (C4×C22⋊C4)⋊21C2, (C2×C4⋊D4).3C2, C2.16(C2×C23⋊C4), (C2×C4).1153(C2×D4), (C2×C4).119(C22×C4), (C22×C4).198(C2×C4), (C2×C4).171(C22⋊C4), C22.183(C2×C22⋊C4), SmallGroup(128,239)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.54D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=d, f2=b, ab=ba, faf-1=ac=ca, eae-1=ad=da, bc=cb, bd=db, ebe-1=bcd, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=bde3 >
Subgroups: 452 in 173 conjugacy classes, 48 normal (26 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, D4, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C24, C24, C2.C42, C22⋊C8, C22⋊C8, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C4⋊D4, C4⋊D4, C2×M4(2), C23×C4, C22×D4, C22×D4, C22.SD16, C4×C22⋊C4, C24.4C4, C2×C4⋊D4, C24.54D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C23⋊C4, C4≀C2, C2×C22⋊C4, C8⋊C22, C2×C23⋊C4, C23.37D4, C2×C4≀C2, C24.54D4
(1 10)(2 15)(3 12)(4 9)(5 14)(6 11)(7 16)(8 13)(17 27)(18 32)(19 29)(20 26)(21 31)(22 28)(23 25)(24 30)
(1 14)(2 21)(3 16)(4 23)(5 10)(6 17)(7 12)(8 19)(9 25)(11 27)(13 29)(15 31)(18 28)(20 30)(22 32)(24 26)
(1 26)(2 27)(3 28)(4 29)(5 30)(6 31)(7 32)(8 25)(9 19)(10 20)(11 21)(12 22)(13 23)(14 24)(15 17)(16 18)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 19 14 8)(2 28 21 18)(3 11 16 27)(4 5 23 10)(6 32 17 22)(7 15 12 31)(9 24 25 26)(13 20 29 30)
G:=sub<Sym(32)| (1,10)(2,15)(3,12)(4,9)(5,14)(6,11)(7,16)(8,13)(17,27)(18,32)(19,29)(20,26)(21,31)(22,28)(23,25)(24,30), (1,14)(2,21)(3,16)(4,23)(5,10)(6,17)(7,12)(8,19)(9,25)(11,27)(13,29)(15,31)(18,28)(20,30)(22,32)(24,26), (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,25)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,17)(16,18), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,19,14,8)(2,28,21,18)(3,11,16,27)(4,5,23,10)(6,32,17,22)(7,15,12,31)(9,24,25,26)(13,20,29,30)>;
G:=Group( (1,10)(2,15)(3,12)(4,9)(5,14)(6,11)(7,16)(8,13)(17,27)(18,32)(19,29)(20,26)(21,31)(22,28)(23,25)(24,30), (1,14)(2,21)(3,16)(4,23)(5,10)(6,17)(7,12)(8,19)(9,25)(11,27)(13,29)(15,31)(18,28)(20,30)(22,32)(24,26), (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,25)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,17)(16,18), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,19,14,8)(2,28,21,18)(3,11,16,27)(4,5,23,10)(6,32,17,22)(7,15,12,31)(9,24,25,26)(13,20,29,30) );
G=PermutationGroup([[(1,10),(2,15),(3,12),(4,9),(5,14),(6,11),(7,16),(8,13),(17,27),(18,32),(19,29),(20,26),(21,31),(22,28),(23,25),(24,30)], [(1,14),(2,21),(3,16),(4,23),(5,10),(6,17),(7,12),(8,19),(9,25),(11,27),(13,29),(15,31),(18,28),(20,30),(22,32),(24,26)], [(1,26),(2,27),(3,28),(4,29),(5,30),(6,31),(7,32),(8,25),(9,19),(10,20),(11,21),(12,22),(13,23),(14,24),(15,17),(16,18)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,19,14,8),(2,28,21,18),(3,11,16,27),(4,5,23,10),(6,32,17,22),(7,15,12,31),(9,24,25,26),(13,20,29,30)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 4A | ··· | 4F | 4G | ··· | 4O | 4P | 4Q | 8A | 8B | 8C | 8D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | 4 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 8 | 8 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | ||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | D4 | D4 | C4≀C2 | C23⋊C4 | C8⋊C22 |
kernel | C24.54D4 | C22.SD16 | C4×C22⋊C4 | C24.4C4 | C2×C4⋊D4 | C2×C4⋊C4 | C4⋊D4 | C22×D4 | C22×C4 | C24 | C22 | C4 | C22 |
# reps | 1 | 4 | 1 | 1 | 1 | 2 | 4 | 2 | 3 | 1 | 8 | 2 | 2 |
Matrix representation of C24.54D4 ►in GL6(𝔽17)
1 | 15 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 15 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 14 | 0 | 0 | 0 | 0 |
16 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
1 | 3 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,15,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,15,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,16,0,0,0,0,14,1,0,0,0,0,0,0,0,0,0,16,0,0,0,0,16,0,0,0,1,0,0,0,0,0,0,16,0,0],[1,0,0,0,0,0,3,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0] >;
C24.54D4 in GAP, Magma, Sage, TeX
C_2^4._{54}D_4
% in TeX
G:=Group("C2^4.54D4");
// GroupNames label
G:=SmallGroup(128,239);
// by ID
G=gap.SmallGroup(128,239);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,387,352,1123,1018,248,1971]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=d,f^2=b,a*b=b*a,f*a*f^-1=a*c=c*a,e*a*e^-1=a*d=d*a,b*c=c*b,b*d=d*b,e*b*e^-1=b*c*d,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=b*d*e^3>;
// generators/relations